MOSFET Module

STARPOWER

SEMICONDUCTOR

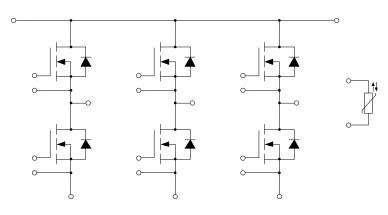
MOSFET

MD15FSR120L2SF

1200V/15A 6 in one-package

General Description

STARPOWER MOSFET Power Module provides very low $R_{DS(on)}$ as well as optimized intrinsic diode. It's designed for the applications such SMPS and solar power.


Features

- SiC power MOSFET
- Low R_{DS(on)}
- Optimized intrinsic reverse diode
- Avalanche ruggedness
- Low inductance case
- substrate for low thermal resistance
- Isolated heatsink using DBC technology

Typical Applications

- Uninterruptible power supply
- Solar Power
- Switching mode power supply

Equivalent Circuit Schematic

©2022 STARPOWER Semiconductor Ltd. 4/20/2022 1/6 Preliminary

Absolute Maximum Ratings T_C=25°C unless otherwise noted

MOSFET

Symbol	Description	Value	Unit	
V _{DSS}	Drain-Source Voltage	1200	V	
V _{GSS}	Gate-Source Voltage	-4/+22	V	
I _D	Drain Current @ T _C =25°C	23	•	
	a T _c =100°C	16	A	
I _{DM}	Pulsed Drain Current	52	А	
P _D	Maximum Power Dissipation @ T _i =175°C	98	W	

Inverse Diode

Symbol	Description	Value	Unit
Is	Source Current @ $T_C = 100^{\circ}C$	TBD	Α

Module

Symbol	Description	Value	Unit
T _{jmax}	Maximum Junction Temperature	175	°C
T _{jop}	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature Range	-40 to +125	°C
V _{ISO}	Isolation Voltage RMS,f=50Hz,t=1min	2500	V

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
D	Static Drain-Source	$I_D = 12A, V_{GS} = 18V, T_j = 25^{\circ}C$		62	78	mO
R _{DS(on)}	On-Resistance	$I_D=12A, V_{GS}=18V, T_i=150^{\circ}C$		124		mΩ
V _{GS(th)}	Gate-Source Threshold Voltage	$I_D=6.45$ mA, $V_{DS}=10$ V, $T_i=25^{\circ}$ C	2.8		4.8	V
$g_{\rm fs}$	Forward Transconductance	$V_{DS}=10V, I_D=12A, T_j=25^{\circ}C$		8.3		S
I _{DSS}	Drain-Source Leakage Current	$V_{DS}=V_{DSS}, V_{GS}=0V,$ $T_i=25^{\circ}C$			80	μΑ
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=V_{GSS}, V_{DS}=0V,$ $T_j=25^{\circ}C$			100	nA
R _{Gint}	Internal Gate Resistance			4.0		Ω
C _{iss}	Input Capacitance	V _{GS} =0V,V _{DS} =800V, f=1.0MHz		1498		pF
C _{oss}	Output Capacitance			45		pF
C _{rss}	Reverse Transfer Capacitance			3		pF
Qg	Total Gate Charge			64		nC
Q _{gs}	Gate-Source Charge	$I_{D}=12A, V_{DS}=800V,$		14		nC
Q_{gd}	Gate-Drain ("Miller") Charge	$V_{GS}=18V$		17		nC
t _{d(on)}	Turn-On Delay Time			4.4		ns
t _r	Rise Time	V_{DS} =800V,I _D =12A,		11		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G}=0\Omega, V_{GS}=0/18V,$ $T_{j}=25^{\circ}C$		22		ns
t _f	Fall Time			10		ns
Eon	Turn-On Switching Loss	V_{DS} =800V, I_{D} =12A, R_{G} =0 Ω , V_{GS} =0/18V,		0.13		mJ
E _{off}	Turn-Off Switching Loss	$R_{G}=002, V_{GS}=0/18 V,$ $T_{j}=25^{\circ}C$		0.01		mJ

MOSFET Characteristics $T_C=25^{\circ}C$ unless otherwise noted

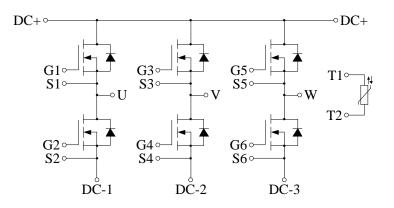
Inverse Diode Characteristics T_C=25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{F}	Diode Forward Voltage	$I_{s}=12A, V_{GS}=0V, T_{j}=25^{\circ}C$		3.3		V
t _{rr}	Diode Reverse Recovery Time	V_{R} =800V,I _S =12A, di/dt=3800A/µs,V _{GS} =0V, T _j =25°C		8.1		ns
Qr	Diode Reverse Recovery Charge			105		nC
I _{rm}	Peak Reverse Recovery Current			26		А

MD15FSR120L2SF

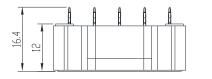
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
R ₂₅	Rated Resistance			5.0		kΩ
$\Delta R/R$	Deviation of R ₁₀₀	$T_{C}=100 \text{ °C}, R_{100}=493.3\Omega$	-5		5	%
P ₂₅	Power Dissipation				20.0	mW
B _{25/50}	B-value	$\begin{array}{c} R_2 = R_{25} exp[B_{25/50}(1/T_2 - 1/(298.15K))] \end{array}$		3375		K
B _{25/80}	B-value	$\begin{array}{c} R_2 = R_{25} exp[B_{25/80}(1/T_2 - 1/(298.15K))] \end{array}$		3411		K
B _{25/100}	B-value	$\begin{array}{c} R_2 = R_{25} exp[B_{25/100}(1/T_2 - 1/(298.15K))] \end{array}$		3433		K

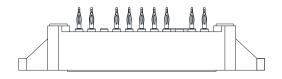
NTC Characteristics $T_C=25^{\circ}C$ unless otherwise noted

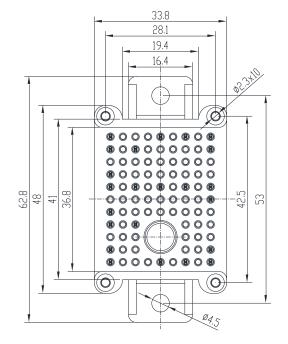

Module Characteristics T_C=25°C unless otherwise noted

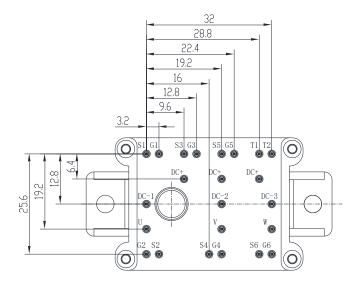
Symbol	Parameter	Min.	Тур.	Max.	Unit	
R _{thJC}	Junction-to-Case (per MOSFET)		1.384	1.522	K/W	
R _{thCH}	Case-to-Heatsink (per MOSFET)		0.348		K/W	
	Case-to-Heatsink (per Module)		0.058			
F	Mounting Force Per Clamp	20		50	N.m	
G	Weight of Module		24		g	

MD15FSR120L2SF


MOSFET Module


Circuit Schematic




Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see <u>www.powersemi.cc</u>), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.

©2022 STARPOWER Semiconductor Ltd. 4/20/2022 6/6 Preliminary