IGBT Discrete

DOSEMI

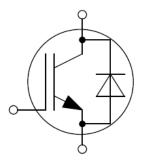
IGBT

DG75H12T2

1200V/75A IGBT with Diode

General Description

DOSEMI IGBT Power Discrete provides ultra low conduction loss as well as low switching loss. They are designed for the applications such as general inverters and UPS.


Features

- Low V_{CE(sat)} Trench IGBT technology
- Low switching loss
- Maximum junction temperature 175°C
- $V_{CE(sat)}$ with positive temperature coefficient
- Fast & soft reverse recovery anti-parallel FWD
- Lead free package

Typical Applications

- Solar Power
- Electronic welder
- Uninterruptible power supply

Equivalent Circuit Schematic

DG75H12T2

Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise noted

IGBT

Symbol	Description	Values	Unit	
V _{CES}	Collector-Emitter Voltage 12		V	
V _{GES}	Gate-Emitter Voltage	±20	V	
I _C	Collector Current @ $T_C=25^{\circ}C$	150	А	
	@ T _C =134°C	75		
I _{CM}	Pulsed Collector Current t _p =1ms	225	Α	
P _D	Maximum Power Dissipation @ T _i =175°C	937	W	

Diode

Symbol	Description	Values	Unit
V _{RRM}	Repetitive Peak Reverse Voltage	1200	V
I _F	Diode Continuous Forward Current	75	Α
I _{FM}	Diode Maximum Forward Current t _p =1ms	225	Α

Discrete

Symbol	Description	Values	Unit
T _{jop}	Operating Junction Temperature	-40 to +175	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C
Ts	Soldering Temperature, 1.6mm from case for 10s	260	°C

ns

ns

ns

ns

mJ

mJ

TBD

TBD

TBD

TBD

TBD

TBD

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CE(sat)}		$I_{C}=75A, V_{GE}=15V, T_{j}=25^{\circ}C$		1.95	2.40	
	Collector to Emitter Saturation Voltage	$I_{C}=75A, V_{GE}=15V, T_{j}=150^{\circ}C$		2.65		V
		$I_{C}=75A, V_{GE}=15V, T_{j}=175^{\circ}C$		2.80		
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	$I_{C}=3.0\text{mA}, V_{CE}=V_{GE},$ $T_{j}=25^{\circ}\text{C}$	5.6	6.2	6.8	V
I _{CES}	Collector Cut-Off Current	$V_{CE}=V_{CES}, V_{GE}=0V,$ $T_i=25^{\circ}C$			350	uA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE}=V_{GES}, V_{CE}=0V,$ $T_{j}=25^{\circ}C$			100	nA
R _{Gint}	Internal Gate Resistance			5.0		Ω
Cies	Input Capacitance	$V = -25 V f = 100 k H_{\pi}$		12.7		nF
C Reverse Tr	Reverse Transfer Capacitance			0.22		nF
Q _G	Gate Charge	V _{GE} =-15+15V		0.84		μC
t _{d(on)}	Turn-On Delay Time	$V_{CC}=600V,I_{C}=75A,$ $R_{G}=10\Omega,$		TBD		ns
t _r	Rise Time			TBD		ns
t _{d(off)}	Turn-Off Delay Time			TBD		ns
t _f	Fall Time			TBD		ns
Eon	Turn-On Switching Loss	V_{GE} =+15V/-8V, L _S =40nH,T _j =25°C		TBD		mJ
E_{off}	Turn-Off Switching Loss			TBD		mJ
t _{d(on)}	Turn-On Delay Time			TBD		ns
t _r	Rise Time]		TBD		ns
$t_{d(off)}$	Turn-Off Delay Time	V _{CC} =600V,I _C =75A,		TBD		ns
t _f	Fall Time	$R_{G}=10\Omega$,		TBD		ns
Eon	Turn-On Switching Loss	V_{GE} =+15V/-8V, L _S =40nH,T _j =150°C		TBD		mJ
$E_{\rm off}$	Turn-Off Switching Loss			TBD		mJ

IGBT Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Turn-On Delay Time

Turn-Off Delay Time

Turn-On Switching

Turn-Off Switching

Rise Time

Fall Time

Loss

Loss

t_{d(on)}

t_{d(off)}

tr

t_f

 E_{on}

 $E_{\rm off}$

V_{CC}=600V,I_C=75A,

 $L_{s}=40nH, T_{i}=175^{\circ}C$

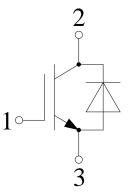
 $V_{GE} = +15 V / -8 V$,

 $R_G=10\Omega$,

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{\rm F}$	Diode Forward Voltage	$I_{\rm F}=75A, V_{\rm GE}=0V, T_{\rm j}=25^{\circ}C$		2.65	3.10	v
		$I_{\rm F}=75A, V_{\rm GE}=0V, T_{\rm j}=150^{\circ}C$		1.85		
		$I_{F}=75A, V_{GE}=0V, T_{i}=175^{\circ}C$		1.75		
Qr	Recovered Charge			TBD		μC
I _{RM}	Peak Reverse	V_{R} =600V, I_{F} =75A,		TBD		А
	Recovery Current	$-di/dt=290A/\mu s, V_{GE}=-8V$				
E _{rec}	Reverse Recovery Energy	$L_s=40nH, T_j=25^{\circ}C$		TBD		mJ
Qr	Recovered Charge			TBD		μC
I _{RM}	Peak Reverse Recovery Current	V_{R} =600V,I _F =75A, -di/dt=310A/ μ s,V _{GE} =-8V L _S =40nH,T _j =150°C		TBD		А
E _{rec}	Reverse Recovery Energy			TBD		mJ
Qr	Recovered Charge			TBD		μC
I _{RM}	Peak Reverse Recovery Current	V_{R} =600V,I _F =75A, -di/dt=350A/µs,V _{GE} =-8V L _S =40nH,T _j =175°C		TBD		А
E _{rec}	Reverse Recovery Energy			TBD		mJ

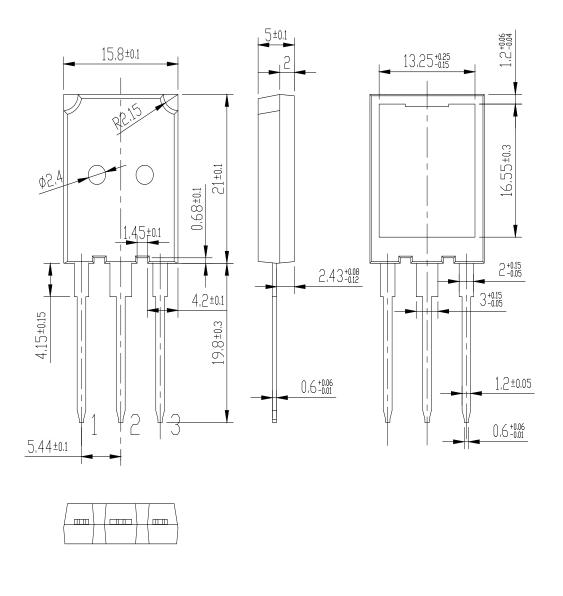
Diode Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Discrete Characteristics T_C=25°C unless otherwise noted


Symbol	Parameter	Min.	Тур.	Max.	Unit
R _{thJC}	Junction-to-Case (per IGBT)			0.160	K/W
	Junction-to-Case (per Diode)			0.256	K/W
R _{thJA}	Junction-to-Ambient		40		K/W

```
©2021 STARPOWER Semiconductor Ltd. 12/7/2021 4/6 preliminary
```

DG75H12T2


IGBT Discrete

Circuit Schematic

Package Dimensions

Dimensions in Millimeters

©2021 STARPOWER Semiconductor Ltd.

5/6

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see <u>www.powersemi.cc</u>), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.