STARPOWER SEMICONDUCTOR

GD450CUY120P1S

1200V/450A chopper in one-package

General Description

STARPOWER IGBT Power Module provides ultra low conduction loss as well as short circuit ruggedness. They are designed for the applications such as electric vehicle and solar power.

Features

- Low V_{CE(sat)} Trench IGBT technology
- 10μs short circuit capability
- V_{CE(sat)} with positive temperature coefficient
- Maximum junction temperature 175°C
- Low inductance case
- Isolated copper baseplate using DBC technology
- High power and thermal cycling capability

Typical Applications

- High Power Converter
- Solar Power
- Hybrid and Electric Vehicle

Equivalent Circuit Schematic
Absolute Maximum Ratings \(T_C=25^\circ C \) unless otherwise noted

IGBT

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CES})</td>
<td>Collector-Emitter Voltage</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>(V_{GES})</td>
<td>Gate-Emitter Voltage</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>(I_C)</td>
<td>Collector Current (@ T_C=25^\circ C)</td>
<td>761</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>(@ T_C=100^\circ C)</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>(I_{CM})</td>
<td>Pulsed Collector Current (t_p=1\text{ms})</td>
<td>900</td>
<td>A</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Maximum Power Dissipation (@ T_J=175^\circ C)</td>
<td>2.6</td>
<td>kW</td>
</tr>
</tbody>
</table>

Diode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{RRM})</td>
<td>Repetitive Peak Reverse Voltage</td>
<td>1200</td>
<td>V</td>
</tr>
<tr>
<td>(I_F)</td>
<td>Diode Continuous Forward Current</td>
<td>450</td>
<td>A</td>
</tr>
<tr>
<td>(I_{FM})</td>
<td>Diode Maximum Forward Current (t_p=1\text{ms})</td>
<td>900</td>
<td>A</td>
</tr>
</tbody>
</table>

Module

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{jmax})</td>
<td>Maximum Junction Temperature</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{jop})</td>
<td>Operating Junction Temperature</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{STG})</td>
<td>Storage Temperature Range</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>(V_{ISO})</td>
<td>Isolation Voltage RMS,(f=50\text{Hz},t=1\text{min})</td>
<td>2500</td>
<td>V</td>
</tr>
</tbody>
</table>
IGBT Characteristics

TC = 25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>CE(sat)</sub></td>
<td>Collector to Emitter Saturation Voltage</td>
<td>(I_C=450A, V_{GE}=15V, T_J=25°C)</td>
<td>1.70</td>
<td>2.05</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_C=450A, V_{GE}=15V, T_J=125°C)</td>
<td>1.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_C=450A, V_{GE}=15V, T_J=150°C)</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GE(th)</sub></td>
<td>Gate-Emitter Threshold Voltage</td>
<td>(I_C=1.3mA, V_{CE}=V_{GE}, T_J=25°C)</td>
<td>5.2</td>
<td>6.0</td>
<td>6.8</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>CES</sub></td>
<td>Collector Cut-Off Current</td>
<td>(V_{CE}=V_{CES}, V_{GE}=0V, T_J=25°C)</td>
<td>1.0</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>GES</sub></td>
<td>Gate-Emitter Leakage Current</td>
<td>(V_{GE}=V_{GES}, V_{CE}=0V, T_J=25°C)</td>
<td>400</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>R<sub>Gint</sub></td>
<td>Internal Gate Resistance</td>
<td></td>
<td>2.4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>t<sub>d(on)</sub></td>
<td>Turn-On Delay Time</td>
<td>(V_{CC}=600V, I_C=450A, R_{Gon}=2.5Ω)</td>
<td>235</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>Rise Time</td>
<td>(R_{Goff}=3.1Ω, V_{GE}=±15V, T_J=25°C)</td>
<td>96</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>d(off)</sub></td>
<td>Turn-Off Delay Time</td>
<td>(V_{GC}=600V, I_C=450A, R_{Gon}=2.5Ω)</td>
<td>618</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>f</sub></td>
<td>Fall Time</td>
<td>(R_{Goff}=3.1Ω, V_{GE}=±15V, T_J=25°C)</td>
<td>93</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>E<sub>on</sub></td>
<td>Turn-On Switching Loss</td>
<td>(V_{CC}=600V, I_C=450A, T_J=125°C)</td>
<td>44.9</td>
<td></td>
<td></td>
<td>mJ</td>
</tr>
<tr>
<td>E<sub>off</sub></td>
<td>Turn-Off Switching Loss</td>
<td>(V_{GC}=600V, I_C=450A, T_J=150°C)</td>
<td>41.2</td>
<td></td>
<td></td>
<td>mJ</td>
</tr>
<tr>
<td>I<sub>ISC SC Data</sub></td>
<td></td>
<td>(t_P≤10μs, V_{GE}=15V, T_J=150°C, V_{CC}=800V, V_{CEM}\leq1200V)</td>
<td>1800</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>
Diode Characteristics \(T_C=25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_F)</td>
<td>Diode Forward Voltage</td>
<td>(I_F=450,A, V_{GE}=0,V, T_J=25^\circ C)</td>
<td>1.65</td>
<td>2.10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F=450,A, V_{GE}=0,V, T_J=125^\circ C)</td>
<td>1.65</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F=450,A, V_{GE}=0,V, T_J=150^\circ C)</td>
<td>1.65</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(Q_r)</td>
<td>Recovered Charge</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>(\mu C)</td>
</tr>
<tr>
<td>(I_{RM})</td>
<td>Peak Reverse Recovery Current</td>
<td>(V_{CC}=600,V, I_F=450,A,)</td>
<td>228</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-\text{di}/\text{dt}=3800,A/\mu s, V_{GE}=-15,V,)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_J=25^\circ C)</td>
<td>18.1</td>
<td></td>
<td></td>
<td>mJ</td>
</tr>
<tr>
<td>(Q_r)</td>
<td>Recovered Charge</td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>(\mu C)</td>
</tr>
<tr>
<td>(I_{RM})</td>
<td>Peak Reverse Recovery Current</td>
<td>(V_{CC}=600,V, I_F=450,A,)</td>
<td>290</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-\text{di}/\text{dt}=3800,A/\mu s, V_{GE}=-15,V,)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_J=125^\circ C)</td>
<td>31.4</td>
<td></td>
<td></td>
<td>mJ</td>
</tr>
<tr>
<td>(Q_r)</td>
<td>Recovered Charge</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>(\mu C)</td>
</tr>
<tr>
<td>(I_{RM})</td>
<td>Peak Reverse Recovery Current</td>
<td>(V_{CC}=600,V, I_F=450,A,)</td>
<td>318</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-\text{di}/\text{dt}=3800,A/\mu s, V_{GE}=-15,V,)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_J=150^\circ C)</td>
<td>34.2</td>
<td></td>
<td></td>
<td>mJ</td>
</tr>
</tbody>
</table>

NTC Characteristics \(T_C=25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{25})</td>
<td>Rated Resistance</td>
<td>(T_C=100^\circ C, R_{100}=493.3,\Omega)</td>
<td>5.0</td>
<td></td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>(\Delta R/R)</td>
<td>Deviation of (R_{100})</td>
<td>(T_C=25^\circ C)</td>
<td>-5</td>
<td></td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>(P_{25})</td>
<td>Power Dissipation</td>
<td>(R_2=0.3\times(1/T_2-1/(298.15K)))</td>
<td></td>
<td>20.0</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>(B_{25/50})</td>
<td>B-value</td>
<td>(R_2=0.3\times(1/T_2-1/(298.15K)))</td>
<td>3375</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>(B_{25/80})</td>
<td>B-value</td>
<td>(R_2=0.3\times(1/T_2-1/(298.15K)))</td>
<td>3411</td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>(B_{25/100})</td>
<td>B-value</td>
<td>(R_2=0.3\times(1/T_2-1/(298.15K)))</td>
<td>3433</td>
<td></td>
<td></td>
<td>K</td>
</tr>
</tbody>
</table>
Module Characteristics $T_c=25^\circ$C unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{CE}</td>
<td>Stray Inductance</td>
<td>18</td>
<td></td>
<td></td>
<td>nH</td>
</tr>
<tr>
<td>$R_{CC'+EE'}$</td>
<td>Module Lead Resistance, Terminal to Chip</td>
<td>0.30</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>R_{thJC}</td>
<td>Junction-to-Case (per IGBT)</td>
<td></td>
<td></td>
<td>57.2</td>
<td>K/kW</td>
</tr>
<tr>
<td></td>
<td>Junction-to-Case (per Diode)</td>
<td></td>
<td></td>
<td>101.9</td>
<td>K/kW</td>
</tr>
<tr>
<td>R_{thCH}</td>
<td>Case-to-Heatsink (per IGBT)</td>
<td></td>
<td>9.6</td>
<td></td>
<td>K/kW</td>
</tr>
<tr>
<td></td>
<td>Case-to-Heatsink (per Diode)</td>
<td></td>
<td>17.0</td>
<td></td>
<td>K/kW</td>
</tr>
<tr>
<td></td>
<td>Case-to-Heatsink (per Module)</td>
<td></td>
<td>4.5</td>
<td></td>
<td>K/kW</td>
</tr>
<tr>
<td>M</td>
<td>Terminal Connection Torque, Screw M4</td>
<td>1.8</td>
<td></td>
<td>2.1</td>
<td>N.m</td>
</tr>
<tr>
<td></td>
<td>Terminal Connection Torque, Screw M8</td>
<td>8.0</td>
<td></td>
<td>10</td>
<td>N.m</td>
</tr>
<tr>
<td></td>
<td>Mounting Torque, Screw M5</td>
<td>3.0</td>
<td></td>
<td>6.0</td>
<td>N.m</td>
</tr>
<tr>
<td>G</td>
<td>Weight of Module</td>
<td>825</td>
<td></td>
<td></td>
<td>g</td>
</tr>
</tbody>
</table>
Fig 1. IGBT Output Characteristics

Fig 2. IGBT Transfer Characteristics

Fig 3. IGBT Switching Loss vs. IC

Fig 4. IGBT Switching Loss vs. RG

©2016 STARPOWER Semiconductor Ltd.
Fig 5. RBSOA

Fig 6. IGBT Transient Thermal Impedance

Fig 7. Diode Forward Characteristics

Fig 8. Diode Switching Loss vs. I_F
Fig 9. Diode Switching Loss vs. R_G

Fig 10. Diode Transient Thermal Impedance

Fig 11. NTC Temperature Characteristic

©2016 STARPOWER Semiconductor Ltd.
Circuit Schematic

Package Dimensions
Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers.
Changes of this product data sheet are reserved.